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Notations

u(r, s) = the r-component of the velocity after the shock

u =

v = v(r, s) = the 8-component of the velocity after the shock

p = the pressure

P = the density

g = the stream function

(r, 6) = the spherical coordinates on the plane passing the
axis of rotational symmetry

S = sin2 —g—

¢ = the maximum velocity of the flow

Py and p, are respectively the stagnation pressure and

density

u=ufc,v=vle 1 , pF o=
v s(1=s)

p*= p/pO and L = log p*

P
Po

The equation of Shock Wave:

2
g [1+(G1-"2€)S+ (G2—2€Gl)s + ...

r =g(s) = go+gls+g252_+.... =

1-2¢€¢s
where € = ! = !
1+ 11—_Nl-l 1+ M —21
\ M M
g =1+ A
) g2
G, = — = 2+4+%x, Gy = — =4+ 2z
1 2 g
o) o)
M = the free stream Mach number
iii



¥ = the ratio of specific heats
N = 2 12 +1
Yy-1 M
B
Nu =y

a, B, 6, n, and X are parameters occurring in the coefficients of
Taylor expansion of flow quantities in the neighborhood
of the stagnation point,

The radius of the spherical body is normalized as unity.
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I. Introduction

The present report is the continuation of Report I. The formu-
lation of the problem has been given there (pp. 1-15). The method of
attack (for the general body problem) will be modified as follows:

(1) To find exact relations between the parameters (in the sense
that the results do not depend on the number of terms taken in the ex-
pansion). Using the same notations as in Report I, the following re-

sults are obtained:

_ 1

8 = 7@ (D
-1 1 3 1 5

8 S @T g @ —g @ (1)

wtn = (111)

= €9
g8 €o
appear above. The results are obtained by utilizing the isentropic

and a fourth relation involving A, besides those which

property on a stream line and the Bernoulli's equation involving the
stream function .

(2) The final solution of expressing all the parameters in terms
of M and u is obtained by the matching conditions of u and v from
the body to the shock by the power series expansions in a transformed
variable. The expansion has to converge fast enough in order to yield
accurate results. Because of this consideration, we have modified our

~ 1) awp + .
OLLOW1ilg TWO wWays:

-1-




(a) Apply the transformation
r¥ = logr

remove the possible singularity due to the coordinates at r = o and
reduce the body equation to r* = o,

(b) For high free-stream Mach numbers, the convergence is
seen to be quite good, while for low supersonic Mach numbers < 2,
the convergence is worse (the series becomes oscillating; namely,
the terms are alternatively positive and negative, while their magni-
tudes become the same order with the preceding term). Fortunately,
in the present case, when free stream Mach number is down to 1. 2,
the detached shock distance is 0.8, the power series method still
yields quite good results providing a transformation of independent

variables is applied. In our calculation, we use

g = £
- E L
N(y-ulr*+ &

. X
| T-Ny-#w)E

where y

L
£

1

2

o2
i
[\
Q
2
i
no
R
%
o+
N

This transformation is motivated by the requirement that no

change of variable is necessary at high Mach number M and a singu-




larity inside the body near the boundary may occur at low supersonic
Mach number M., This is seen from the following considerations:

The fundamental equations are

—— —— L =2 v M =2 =2
uu . +VVg s(l-s)-vis(l-5s)= l+u[1 u’-vis(l S)]Lr* (1)
bl et —-2,1 - = -2 =2

Uuv ., tVvg s(l=s)+ v (f— s)tuvs=-— l—éﬂ [1-u"-Vv S(l-s)]Ls (11)

= Tl — — ) | pp— - ) i}
2u+v(l 2s)+ur* +VSS(1 s)+l ey [qu*+ vs(l s)Ls] o) (111)
where r* =logr, s = sin2 g

Note that the logarithmic pressure L = log L. where P, is the stag-

nation pressure and the velocity components © W=u/c and V = —‘Ci/s(l—s)

are different from the notations used in Report I,

When s = o, the equations (I) and (III) yield
—2 du _ —~  —
(u" —u) gop =# (2utv)

The singularity will likely occur when u=+ [



Vi

. 2 -1 2 1
M =
Since, for M >1, Nu “['y I +’Y+1 2]<[J,
M
hence ,/Nu</u.
Now, u=- (JNu at roo= log ( 1+A).

Therefore the singularities may occur at a point inside the body as
well as beyond the shock. In order to improve the convergence of
any expansion at the body when 6 = o, this singularity should be trans-

*
formed into a point far away from the body r = o.




(3) The equation of shock wave in the original series form will
be only valid in the neighborhood of the nose. In order to
calculate the flow field in the large, we write the equation

of shock wave as

r=g(s) = 1 [ 1+(G,~2€)5+(G,~2¢G,)s" +..]

1+/————1-N“ s
1=y

The denominator is introduced to insure that the surface of the

shock will tend to the Mach cone at infinity, As the numerical results

show, this expression converges quickly and yields the location of
sonic point on the shock quite accurately even if only g, and Gl are

taken into consideration. This is not a surprise as such will be a

conic section, *

% See also Ref, 1.




II. Presentation of Analytical Results

The Match conditions for the velocity components u and v are
applied (as it will be discussed in detail in V.), we find the following
results:

(1)
_9 - (1.5-2.54) y— 1,927+ 3,914u

1-2u

(1)

This formula compares with Van Dyke's numerical results in excel-
lent agreement, From his definition of shock, we have the following
relation

where Rb = the radius of curvature of the body,
Rs = the radius of curvature of the shock {(at s = o)

A = the detached shock distance

(2)

The detached shock distance is given by the equation:

_Q_ A:::z
Ak = Y 5 + 2 > (2)
¢ -3 $- 35

if the higher order terms in A>-”~3 are neglected, where




¢=-x+y (2+x)

x= G, -2 which is given by (1)
and
2 2  =2A%
X (1- e
R 3)
2y[1-yu] 2u

The equation is solved by successive approximation., The re-

sult of shock distance (Fig. 1) is obtained from the first approximation

Q
A% = Y + 2 0 (2a)
¢

]
ol

where Aék: Y " and the quantity A* in Q 1is also substituted by
A%k ¢ - 9
o

(3) The Velocity Gradient along the Body at the Stagnation.

The equation for the determination of A= \/—1\72 a is

¢:A+(.§_—l) A +
1
(N-1) &A% + N
1-u Q+A 1, (Q-A) N
+ g as = NO- o) TSy ][ i,z (6
2A (N-1)A% 4+
A

where



2
o (=) x2 gl T2
9 I +u 1+ u
2g yll-yul 2u 2yl 1-yu} 2u
x= G,~2, ¢ =—-x+y (2+x)

The first approximation is given by neglecting the term A*Z:

AFA _ QA:{:
A(N~1)A%* + 1 1+A(N-1)A*

A=¢ +

or

AZ(N-1)a% +AL1- (N-1)A%-AT 1-(g-Q AT) = 0

For the determination of the sonic point and the velocity field

in the large, (for the latter, Jacobi's expansion is used) see Section
VI.




III. The Calculation of the Entropy as a Function of Y Based on the
Shock Shape.,

From the equation of continuity, one may define the stream

function as follows:

¢ (r, 6')=27r[frprvSinedr—frprZuSinGd6] (7)

Where I is a path in the fluid from (1, o) to (r', 6'). The constant
factor 27 is added so that the Y has the interpretation of mass flow
for the case of rotational symmetry.

On the shock

r=g0+gls+g282+

. 2 2 2
b=p ,Um (rSin 6) =4mp ,Ug, [ s+(2G;-1)s (8)
+(2G2+G12 ~2G)s%+. .. ]
where p; = the free stream density

U

Gi: gi/go, i=1,2, .. ..

the free stream velocity

Thus, on the shock,
2 5 9 _3
s =% -G -1¥ + {2(2G-1)"-2G,-G,"+2G,} ¥ (9)

where

¥ o= 5 Y (10)
47TplUgo.
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Define the dimensionless entropy as

3k
cw) = LB =Ry (2.
pO

®
07 o

On the shock wave, both p* and p* are known functions of s,
if one assumes the shock shape r = g(s) or

r = log g(s) =h(s) = A*+hls+h282+, . .

where A" = log (1 +4) =log g
h, =G,
Gy
hy =Gy~ 3

Consequently, on the shock, log C(}) can be computed as a power
series * of s

E3

* * % 177
log C(¥) = log 2—7 = log (B*- )Y + log p
p (Y
2 _2 1
= log[l-u - v s(l-s)] —5
1-Nu
-2u
+ log [1-2s +2h's (1—s)]j["u
2u
I T-u
-— —-— '
+ log [ ut+tvs(l s)h] (11)
JNH
The condition of L on the shock is given on p. 14 in Report I,
(v-1)p,T 2 2 g Cos 6 +%§ Sing
L= log {———— [1-u -V s(1-s)] —— —}
2vp, C F£vVs(i-s) -ug
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By means of (9), it is expressed in terms of U :

-

2
logCW)=A b Ad +. .. (12)
where
AL = _(l+u)ux2(l—y)2 1 (13)
1 y (T=@) T=yn)
x = G1—2, y = Nu

From (11), and (9) and the power series expansion of u and v
on the shock A2 can be computed in terms of g, Gl’ and G2 as

well as

Finally, one may rewrite (7) as

b= K [ o0 (1+R)% ds - frp*v s (1-s) (1 +R) dR]  (14)

Where I' is a curve connecting (o, 0) to (R, s) in the Rs plane;

R=r-1, s-= sin2 Q; U=2 and v= Y \/s(l—s) are functions of
2 c c
R and s;
1 PC 1 1
Ko: — ° . 5 =5 (15)
gO DlU AR I‘IM {-_ l—upz ] 2;..4
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IV. Derivation of the Exact Relations

We shall now utilize the fact that the entropy is constant along

the stream line, Thus we have
log p* — v log p* =log C(¢):_A—l$+z2$2+ e (16)

On the other hand, Bernoulli's equation in the dimensionless form

along a stream line is

PE 2 oW -F s(l-s) (17)
p:,:

or log p* - log p*=log[l-u-Vv s(l-s)] (18)

From (10) and (11), we have

L+ p 2 2
L - 5 log[1-u —v s(l-s)]
B 1—u = = = -2
- —T[AIQJ +A2 4’ +. . . -] (19)

where L =log p™.
Now, consider (19) for small values of R = r—1 (namely, in
the neighborhood of the body), the flow quantities L, u, v can be

expanded in power series of R:

_ . . 1 Nl
L~Lo(s)+L1(s)R+§ Lz(s)R + ., .
T =u () R+~ u,(s) R?

u —uls §u25 + . .
v o= v (s)+v (S)R+ 4+ v.(s)RZ+
o) 1 2 2 *
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By means of (17) and (9), the coefficients of —g—% can be explicitly

expressed in terms of these coefficients, Differentiating (19) with
respect to R and comparing the coefficient of R power, the first

term yield the relation

1+u 1
L +— s(l-s)2 v v
1 2u ol 2
2,790
S - Ly, s0-s)[1-sU-s)ve"] *
2u 1o 3.1/2 2 1K
g, N " Tw[ 1-Nu"] 2u

From the fundamental equation (1) (Report I, p. 2)

- 2
Ll(S)= 1+pu s(l-s) Vo
1- 2s(l-—s)
Vo
Thus, (20) and (21) give an exact relation
1+u

vi(s)+v (s) =q[1-v %s (1-5)] 2

which should be satisfied for all values of s, where

1 3/2 2 2 liu
gN" Tug T [1-NuT] 20

In particular, when s = 0, it yields

oz+1’)=%

(20)

(21)

(22)

The coefficient of s yields an identity, while that of s2 gives:
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a1 3.1 5
—6-—3——+§'Q+§Q (25)

Compare the coefficient of R2 in (19), we have the relation:

2
2 2
1 14 s(l-s) , 11 2 s“(1-s) 2 2
§L2+ o [ T (s(l-s) + v, +v0v2)+ ——-——Fz 2v0 vy ]
1=y s(l-s) * * * s(l-s) 2 *
- 2u AlKo 2F (po vith Vo+po Vo T F 2Vovl P )
2 %2 2 2 2 1
- A2K0 p v, s (1-s) —5 (26)
F
2
where F = l—v0 s(l-s),
>}<_ Sk K 1 B3 2
p—-p0+pl R+‘2—p2R+...
L
= e s

A, 1isgiven by (13), K, by (15), and A, can be explicitly express-
ed in terms of o2 Gl’ G2’ N and u.

Since (26) holds for all s (small enough), the coefficients yield
successively. an identity,

w
1
N

a, _ (27)

and a relation involving A, n, and others already appeared, The last
mentioned relation is not used in the present Report,

These exact relations (24), (25) and (26) are not found before.
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* V. Matching Conditions

The fundamental equations (1), (II), and (III) in the Introduction
I, yield all the coefficients of u, v, and L as power series* of R
in terms of vo(s) and its derivatives in s. The shock conditions
yield all physical variables u, v and L interms of g(s) on the shock.
In order to determine Vo and g, it is necessary to relate them by the
matching conditions of u and v from some expansion (which is equiva-
lent of the integration of the differential equation) from the body to the
shock up to some powers of s besides those relations obtained from
the constancy of entropy along a stream line.

In the piesent report, if only a, B, 6, n, g, (or A, or
log (1+A) = A") and G, (or x) are to be determined, threebmatching

— %k _ sk
conditions are taken for both u (r,o) andv (r, o) and
also for %—:— at r = log (1+A)=Aq‘, namely
u(a”, o) =-fﬁu
3K 1 >:<2
= u ,o+ul,oA t 5 (u2’0+u1’0)A
1 , )A*?’
+ g lug o F3uy twy g +
rhus ) .8 - Q) x2 5 )AS_ (N Aa=3 (28a)
—y =AM +GA-FA - U - g AT Q)

where y =N

A= /N2«

cf. the Appendix

,
L
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Similarly, from that for v, we have

w2
= —x+y(2+x) = A+ (Q-A) A" +( l4_y“ A3y QgA YAT  (29)

The expression for % at r =A" and s =o0 is

sk B O_ 32
u (A,o0)=u (2+x)ur* (A, o)

1
(o)
since gg—s——— = ES + ar* h'(s)
(o)
— . (o)
where E“(S)A:o =Glo and U (s) = u (h(s), s).

The subscript indicates the partial derivative,

Consequently, we have

-2x(2+x) +2y (14x) +u [ 2xy + x2y+x2]

3 sk 3 .,2
A" A A 1 2 3+u *
S8 [ Q@S wr g AT TR Q-] AT (30)

1
2

E3
The unknowns to be solved in (28a), (29) and (30) are A = log (1+A),
X = Gl—2, and A = \/F2 a.
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From (28a) and (29), one derives

3 2
B A S B N R - SRRy Y 1
%2
This exprgssmn is exact up to the order of N . Hence, when

the terms of A are neglected, as compared to A"‘, one obtains the

following relation involving only A and x;

(32)

Since the numerical value of A* =log (1 + A) turns out to be £ 0.6
for M > 1.2, the equation (32) should be a good relation for a consid-
erable range of values of M (provided that it is not too close to 1),
With x to be determined later as functions of y and u or M and
v, the detached shock wave distance A calculated from (32) is in
excellent agreement with existing theoretical results () as well as

(11)

The equation (29) yields A as a function of x, for which

experimental results as indicated in the Figure 1,
the approximation solution of x of (30) is obtained by solving x in
terms of u for various values of y or M (y=u and y = —2—). This

yields

(1.5 - 2.5u )y — 1.927+3.914u (33)
1 -2u

The comparison with Van Dyke's result gives quite good agreement
for all M >1.2. As expected, the result in A is also in good agree-
ment ( with a few per cents) except when M < L, 8, the discrepency

becomes larger. This is not a surprise as all the expansions become
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alternative positive and negative while the A and the coefficients of
its powers increase as M decreases (in the range 1,2 { M < 2). This
means the convergence of the power series becomes worse. The reas-
on for this is due to the singularity of the solution, which occurs in-
side the body and gets closer to its boundary when M decreases.
For this reason, as mentioned in the introduction, the transformation
%
£ = 2
N(y-u)r +

i

is applied, The transformation is constructed based on the consider-
ation that it reduces to identity transformation while M = + ®© or

N = 1, and it transforms a point close to the boundary inside the body
into infinity for low supersonic M. The modified equation for A is
given as in the introduction., While the modifications in x and A*
are small, we still use the expressions as obtained above,

The results thus obtained for A is used for

Q’:‘: = ___‘A_.h = i
2 /Nu \/ 7]
(the velocity gradient along the sphere at the stagnation) as a function

of M. As shown in Figure 3, the agreement with the experimental

(11)

values is very good, The pressure distribution on the body is

shown in Fig, 2 (for v = 1. 4).
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VI. Discussion of the Results and Conclusions, (The Sonic Point

and the Sonic Line)

As a further test for the present theory the sonic point and the
Mach contour such as the sonic line are computed.

Since at the sonic point on the body r* = o, the directionless
velocity vi=v Vs(I=s) is a known value\/T, thus one has the fol-

lowing relation for the determination of the sonic point or for the

values of ¢ =/s(l—-s) = % sin 6:

2 4
A2 =A+A02—A(l+—2A + A )04 (35)
o 2 N 9 2
N
when y= Ny, A=\/N—2af
or
2 4
\/j— = 0o + 03— (% + 24 + A2 )05 (35a)
A N 2N

For M>1.2, —% < .5, Thus the solution for o in (35a) can be
expressed as the power series of ‘% ; 1. e,

2 4

o= k-kPaakte(Too+ 2+ Ay ) k2,
2N
where k =\/% . The results thus obtained are plotted for various
Mach numbers as in Figure 4, which is again in good agreement of
(11)

the experiment, *
Finally, for the velocity field as a whole, we shall use the data

thus obtained in conjunction of the use of Jacobi's expansion. For

instance, as it is checked above that the velocity component v m

along the body is given, at least, accurately up to the sonic point as
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a power series of s with the parameter M and u, we may utilize
the fact that v is also known at the sonic point s= S, to construct
the Jacobi's expansion of v, This partial sum of Jacobi's expansion
is expected to give good approximation for s beyond the sonic point

%
S, - Thus, at r = o,

2 2 2 4
VNV ) -- ) ae g (=250 8- 2 5 g+ )
o) S

5 N
o o
s 3
o) o)
Since the exact relation 144
1+u 9 2u
votv, =qF 2u =q[l—vos (1-s)] (38)

holds, this gives v, immediately on any point on the body. Now, for

a fixed value of s, utilizing the data of v and vr* atr =1, and ¥

sl
=K

on the shock as given by:

[NT = @ p) = (o) P81 (1-28) | 1o b

— ' .
1+h‘25(l—s) M2 1-2s +2h's(l-s)

l—h'zs (1-5s)
1+ h‘2 s(l-s)

+ (1-u)

. - . %
One can form the Jacobi expansion for v inr |

Similarly, with the data of u, (i. e., u; and u2) on the body and
that of u on the shock given by

* See sl2 or (12) on Report I,
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2
VNG = - BB (1o24) 4158 (1-gg) 1R sU=s)
1+h'“s(1l-8s)
1 1
—~(1-u) — -
M2 1-2s +2h's(l-s)
2h's(l -
+ (1 ) 2RSU=S) (40)
1+h'“s(l-s)
dg
Rt = 98
g
1 1 1
g - [14(G,~ [1-—5)s + (Gy=/ 1-25)s7] +.
1 M M
1+y1l- — s
2 (41)

The Jacobi's expansion for u in r" can be formed, This will give the

veloci

ty field which is accurate enough in a region beyond the subsonic

region,

As for the sonic line, its equation is given by

2 2

u +v = u“+v 7 s(l-s) = pu. (42)

Now, if one expresses s as function of r  for (42):

S = s(r*)

the data of s(o) and s'(o), s''{o}) are cumputed from {42) soc is s

at r = h(s ) from the shock conditions and (42), The sonic line can

then be plotted by Jacobi's expansions of s in r . The result is in-

dicate

d in Figure 5.

e

" The

slope is very accurate provided S, is because of the exact re-

lation,
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In conclusion, the present theory has established exact relations
between the derivatives of flow velocity components and the shock
shape parameters. Additional matching conditions on velocity com-

ponents yield all parameters explicitly in terms of

2 1 - ov-1

N=1+ =T F and H EERE The matching conditions yield
excellent results for all M 2> 1.2 if the power series of flow velocity
components are expressed in an appropriately transformed variable

£ instead of r » Which is motivated by the singularity inside the body
(by analytic extension of the solution), Then the velocity field is con-
structed by the use of Jacobi's expansion, which is accurate enough for
a domain covering the whole sub-sonic region as a sub-domain. A
better result can immediately be obtained if the exact relation involv-

ov

ing A and G2, and a matching condition on Ve = 3g are taken into

consideration, This consideration has not carried out in the present

report.

.
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VII., Appendix

(A) Derivatives on the Body
For the sake of self-containing the derivatives (at the body) of

the flow velocity components and the logarithmic pressure L = log Ep—
o

up to the second powers are listed belows:

To= Seug(e) +uys) (-1 4 g uy(s) -1P L L
\% 1 _ 1 2
v = E —S—(l-——s)-—— VO(S)+V1(S) (I‘—l)'f? V2(S) (I‘—l) +. ..
L = log B = L ()4 Ly (s) (r-1) 4 5 Ly () = 1P 4. .
(o]
where uo(s) = o

3
u ()= —2a+ (da-168 ﬂ}f;“))sz

y 20 ) 90 8305 46 2K 44,0 24mE 2,
7 1- I-u
4(1/:25;4— 1) 40277(3 +u)
uz(s) =2(Ba-n)+[64B-4(Ba—-n)+ = '“ + m ]s

120°(3 + 4u +5u°)

+[966 - LTH 19245 - 5
]
M
1—
_144p%4 32640) o0 +(5+u)2( H) 40t
M
M
5u-1 3 +3 2 2
- 102 R— : 120—#H 12a™n 1 s™+. ..
2
vo(s)=20+835+(325—83) ST+ ...
1+ 2 1+ 3
vils) =2n + (- ““ 4o n- u“ 4a"-8B)s

* Several misprints in Report I are corrected.
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2 -

1+ 5u—1 2. l-pu 4

+[ -

2

2
+ 88+ 48i— +646+l+]:21“ 40° + _15_& 4c2n1s% +. ..
U

3
vy (s) = 8a~ 168 + (‘5“:” 40 L 644’ B+ BA s+, . .

L =-1+u2a/2s +1—+E (2(;112--16afB—4ar4:)S2 +. ..

o T m
L, = l*“4afzs + 4 1+ u (830—02+4a4) sz+. ..
7 m \

L. = - 40 (1 +y) + 1M (402 3248 + Ban+ 8a®(1-3u) )s +

. ) : — sy
From

the fundamental equations, we have also the following re-
lations:

Lo(s) = 12+#“ log (l—vozs (l-8))

2
v “s(l-s)
Ll(s) =1t u o

1-v s(l-s)

__ 11w
Lz(s)_

2
. [u % u)t v s=s)+ v _"s(1-s)
ul 1-v s(l-s)]

1 1
- 2v vls(l—s)] + 2V1V 382(1_5)2 Ll 5
o o Ho1-yv “s(l-s)
o}
where ul' = % u;
1
. [VOZS(I—S)]
uy = —[vos(l—s)] ¥ 5 vos(l—s)

2
1- v, s(l—s)
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(B) Shock Conditions
Let the shock shape be given as:

r=g(s)=gg[ 1+Gls+stz+. R

=g0[1+(2+x)s+(4+z)sz+. N |

On the shock,

\IFEG = —-y+ (2y—2x+2yx—x2 +X,2IJ )s

+[=2(y-p)(-2z+9x+3xu)

- (1-u) (4z-18x +4xz-25x2

-8 _yxhys%e. L.

n

\/—1\?7 -xty(2+ x)

+[ (y-u) (2z - 10x - 3x2) + (1) (-2z + 10x+5x2+x3)] s+ . ..
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/;b/ R 45°

A — Present Theory

o0 — Experiment

FIG.5

Sonic Line on a Sphere for Several Mach Numbers.




